Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
J. venom. anim. toxins incl. trop. dis ; 25: e.20190020, 2019. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484762

RESUMO

Background:Ant venoms express surface molecules that participate in antigen presentation involving pro- and anti-inflammatory cytokines. This work aims to investigate the expression of MHC-II, CD80 and CD86 on the polymorphonuclear cells (PMNs) in rats injected with samsum ant venom (SAV).Methods:Rats were divided into three groups - control, SAV-treated (intraperitoneal route, 600 μg/kg), and SAV-treated (subcutaneous route, 600 μg/kg). After five doses, animals were euthanized and samples collected for analysis.Results:The subcutaneous SAV-trated rats presented decreased levels of glutathione with increased cholesterol and triglyceride levels. Intraperitoneal SAV-treated animals displayed significantly reduced concentrations of both IFN-γ and IL-17 in comparison with the control group. However, intraperitoneal and subcutaneous SAV-treated rats were able to upregulate the expressions of MHC-II, CD80 and CD86 on PMNs in comparison with the control respectively. The histological examination showed severe lymphocyte depletion in the splenic white pulp of the intraperitoneal SAV-injected rats.Conclusion:Stimulation of PMNs by SAV leads to upregulation of MHC-II, CD 80, and CD 86, which plays critical roles in antigen presentation and consequently proliferation of T-cells. Subcutaneous route was more efficient than intraperitoneal by elevating MHC-II, CD80 and CD86 expression, disturbing oxidative stability and increasing lipogram concentration.


Assuntos
Animais , Complexo Principal de Histocompatibilidade , Oxirredução , Venenos de Aranha/análise , Venenos de Aranha/imunologia
2.
Genet. mol. biol ; 29(3): 543-550, 2006. graf, ilus, tab
Artigo em Inglês | LILACS | ID: lil-450296

RESUMO

The genes encoding the glycinin subunits G2 and G4 were molecularly manipulated and modified to test the possibility of increasing the nutritional value of soybean seed proteins. The recombinant DNAs pSP65/G2HG4, pSP65/G4HG2, pSP65/248 Metl, pSP65/248 Met2,3 and pSP65/248 Metl.2,3 were used in in vitro translation to produce (i) chimeric proteins consisting of reciprocally exchanged acidic and basic G2 and G4 domains and (ii) Gy4 point mutants with an increased number of methionine residues. The ability of the recombinant proteins to assemble into proper quaternary structures was investigated using sucrose gradient fractionation. The data produced by this study could provide valuable clues for the potential improvement of genetically modified crops.


Assuntos
DNA Complementar , Glycine max/genética , Mutagênese , Transporte de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA